New view on the compatibility of hemoglobin function in the erythrocytes
 
More details
Hide details
1
Obtetrics and Gynecology, Danylo Halytsky Lviv National Medical University, Ukraine
 
2
Department of Public Health, SUMY STATE UNIVERSITY, Ukraine
 
3
Department of Biochemistry, DANULO HALYTSKY LVIV NATIONAL MEDICAL UNIVERSITY, Ukraine
 
4
Department of Chemistry, Lviv Medical University, Ukraine
 
 
Submission date: 2023-07-25
 
 
Acceptance date: 2023-10-03
 
 
Publication date: 2024-02-23
 
 
Corresponding author
Tetiana Volodumurivna Fartushok   

Obtetrics and Gynecology, Danylo Halytsky Lviv National Medical University, Pekarska, 79010, Lviv, Ukraine
 
 
Wiadomości Lekarskie 2024;77(1):9-16
 
KEYWORDS
TOPICS
other
 
ABSTRACT
Aim:
The aim of our research is to study the process of hemoglobin oxidation and the enzymatic reactions associated with it.

Material and methods:
Heparinized human blood (15 IU/ml) was obtained from the clinical department . The concentration of oxy- and methemoglobin, auto-oxidation of hemoglobin was determined spectrophotometrically spectrophotometrically. Autooxidation of hemoglobin was recorded spectrophotometrically, and protein concentration was determined by the Lowry method. Monooxygenase activity of hemoglobin was also measured by the method described by Lowry spectrophotometrically.

Results:
The obtained experimental data allow us to propose a mechanism of "spontaneous autooxidation" of oxyhemoglobin, which can be described by the following equations: Hb2+O2 Hb3+ + O2- (1) Hb2+O2 + 2e - + 2H+ Hb3+ + H2O2 (2) Hb2+O2 + 2e - + 2H+ Hb2+ + H2O2 (3) Hb2+ + O2 Hb2+O2 (4)

Conclusions:
In addition to the main, previously known functions of hemoglobin (gas transport, peroxidase, monooxygenase), it catalyzes a two-electron oxidase reaction in which O2 is reduced to H2O2. This is confirmed by experimental data on the formation of one of the products of "spontaneous autoxidation" of oxyhemoglobin ₋ deoxyform at pH 5.6 ₋ 8.9.

REFERENCES (31)
1.
Borysyuk MV. Systemnyj analiz mehanizmov regulatsiji srodstva krovi k kislorodu. II. Osobennosti regulatsiji kislorodsvyazyvajuschih svojstv krovi v protsesse jejo tsyrkulyatsiji. [Systemic analysis of the mechanisms regulating blood means for oxygen. II. Features of regulation of oxygen-binding properties of blood during its circulation]. Uspehi phisiol. Nauk. 1983;14:85-101. (in Russian).
 
2.
Korobov VM. Rol' oksydu azotu v regulyatsiji transportu gaziv [The role of nitric oxide in the regulation of gas transport]. Ukrainskij biohimichnyj zhurnal. 2001;73(4):13 – 18. (in Ukrainian).
 
3.
Kriklivyj IA, Rekun HM, Starodub NF. Metody izuchenija funktsional'nyh svojstv hemoglobina. Metody molekulyarnoj biologiji. [Methods for studying the functional properties of hemoglobin. Methods of molecular biology.]. Kiyev: Nauk. Dumka. 1979, рр.191 – 201. (in Russian).
 
4.
Marinov BS, Ruzijeva RH. Protivopolozhno napravlennaja donorami i aktseptorami regulyatsija srodstva kisloroda k hemoglobinu. [Oppositely directed regulation of oxygen affinity for hemoglobin by donors and acceptors]. Biohimija. 1990;55 (9):1616 – 1623. (in Russian).
 
5.
Reutov VP, Sorokina YeH, Gozhenko AI et al. Tsikl oksida azota kak mekhanizm stabilizatsii soderzhaniya no i produktov yego prevrashcheniya v organizme mlekopitayushchikh. [Cycle of nitrogen oxide as the stabilization mechanism of no and its transformation products maintenance in the mammal organisms]. Aktual'ni problemy transportnoyi medytsyny. 2008;1(11):22 – 28. (in Russian).
 
6.
Storozhuk P.G. Fermenty pryamoj i kosvennoj antiradikalnoj zaschity eritrotsitov i ih rol' v initsiatsii protsessov oksigenatsiji hemoglobina, antibakterialnoj zaschite i delenii kletok [Enzymes of direct and indirect antiradical protection of erythrocytes and their role in the initiation of hemoglobin oxygenation processes, antibacterial protection and division cells]. Vestnik intensivnoj terapii. 2003;3:8 –13. (in Russian).
 
7.
Terwilliger NB. Functional adaptations of oxygen – transport proteins. J. Exp. Biology. 1998;201(8):1085-98. doi: 10.1242/jeb.201.8.1085.
 
8.
Zavodnik IB, Lapshyna YeA. Protsesy okislyenija hemoglobina cheloveka. [Oxidation processes of human hemoglobin]. Biohimiya. 1996;61(1):42 – 48. (in Russian).
 
9.
Faivre B, Menu P, Labrude P, Vigneron C. Hemoglobin autooxidation/oxidation mechanisms and methemoglobin prevention or reduction processes in the bloodstream. Literature review and outline of autooxidation reaction. Artif Cells Blood Substit Immobil Biotechnol. 1998;26(1):17-26. doi: 10.3109/10731199809118943. DOI.
 
10.
Wallaces WJ, Houtchensg RA, Maxwell JC, Caughey WS. Mechanism of Autooxidation for Hemoglobins and Myoglobins. Promotion of superoxide production by protons and anions. J. Biological Chemistry. 1982;257(9):4966-4977.
 
11.
Alayash AI. Oxygen therapeutics: can we tame haemoglobin? Nat Rev Drug Discov. 2004;3(2):152-9. doi: 10.1038/nrd1307. DOI.
 
12.
Novientri G, Sadikin M, Jusman SW. Isolated Diaphorase From Bovine Erythrocyte Cannot Reduce Oxidized Cytoglobin (Metcygb). Rep. Biochem. Mol. Biol. 2022;11(2):289-298. doi: 10.52547/rbmb.11.2.289.
 
13.
Johnson RM, Goyette GJr, Ravindranath Y, Ho Ye-Shih. Hemoglobin autoxidation and regulation of endogenous H2O2 levels in erythrocytes. Radical Biology & Medicine. 2005;39(11):1407-17. doi: 10.1016/j.freeradbiomed.2005.07.002. DOI.
 
14.
Rocha S, Gomes D, Lima M et al. Peroxiredoxin 2, glutathione peroxidase, and catalase in the cytosol and membrane of erythrocytes under H2O2-induced oxidative stress. Free Radical Research. 2015;49(8):990-1003. doi: 10.3109/10715762.2015.1028402. DOI.
 
15.
Patel RP. Biochemical aspects of the reaction of hemoglobin and NO: implications for Hb-based blood substitutes. Free Radic Biol Med. 2000;28(10):1518-25. doi: 10.1016/s0891-5849(00)00259-8. DOI.
 
16.
Novientri G, Sadikin M, Jusman SW. Isolated Diaphorase From Bovine Erythrocyte Cannot Reduce Oxidized Cytoglobin (Metcygb). Rep Biochem Mol Biol. 2022;11(2):289-298. doi: 10.52547/rbmb.11.2.289. DOI.
 
17.
Rifkind JM, Mohanty JG, Nagababu E. The pathophysiology of extracellular hemoglobin associated with enhanced oxidative reactions. Front Physiol. 2015; 5(500): 1-7. doi: 10.3389/fphys.2014.00500. DOI.
 
18.
Fortes GB, Alves LS, de Oliveira R et al. Heme induces programmed necrosis on macrophages throught autocrine TNF and ROS production. Blood. 2012;119(10):2368-75. doi: 10.1182/blood-2011-08-375303. DOI.
 
19.
Gonzales R, Auclair C, Voisin E et al. Superoxide dismutase, catalase, and glutathione peroxidase in red blood cells from patients with malignant diseases. Cancer Res. 1984;44(9):4137-9.
 
20.
Gueye PM, Bertrand F, Duportail G, Lessinger J-M. Extracellular haemoglobin, oxidative stress and quality of red blood cells relative to perioperative blood salvage. Clinical Chemistry and Laboratory Medicine. 2010. doi:10.1515/CCLM.2010.106. DOI.
 
21.
Hebbel RP. Auto-oxidation and a membrane-associated ‘Fenton reagent’: a possible explanation for development of membrane lesions in sickle erythrocytes. Clin Haematol. 1985;14(1):129-40.
 
22.
Lin S, Liang Y, Zhang J. Microglial TIR-domain-containing adapter-inducing interferon-β (TRIF) deficiency promotes retinal ganglion cell survival and axon regeneration via nuclear factor-κB. J. Neuroinflammation 2012; 9(39). doi:10.1186/1742-2094-9-39. DOI.
 
23.
Liu X, Spolarics Z. Methemoglobin is a potent activator of endothelial cells by stimulating IL-6 and IL-8 production and E-selectin membrane expression. Cell Physiology. 2003. doi:10.1152/ajpcell.00164.2003. DOI.
 
24.
Nagababu E, Fabry ME, Nagel RL, Rifkind JM. Heme degradation and oxidative stress in murine models for hemoglobinopathies: Thalassemia, sickle cell disease and hemoglobin C disease. Blood Cells, Molecules, and Diseases. 2008;41(1):60-66. doi:10.1016/j. bcmd.2007.12.003. DOI.
 
25.
Planchais C, Noe R, Gilbert M. Oxidized hemoglobin triggers polyreactivity and autoreactivity of human IgG via transfer of heme. Commun Biol. 2023;6:168-175. doi:10.1038/s42003-023-04535-5. DOI.
 
26.
Vallelian F, Buehler PW, Schaer SJ. Hemolysis, free hemoglobin toxicity, and scavenger protein therapeutics. Blood. 2022; 140(17):1837-1844. doi: 10.1182/blood.2022015596. DOI.
 
27.
Carnier Y, Ferdinand S, Garnier M. Plasma microparticles of sickle patients during crisis or taking hydroxyurea modify endothelium inflammatory properties. Blood. 2020;136(2):247-256. doi: 10.1182/blood.2020004853. DOI.
 
28.
Hierso R, Lemonne N, Villaescusa R. Exacerbation of oxidative stress during sickle vaso-occlusive crisis is associated with decreasedanti-band 3 autoantibodies rate and increased red blood cell-derived microparticle level: a prospective study. Br J Haematol .2017; 176(5): 805 -813. doi: 10.1111/bjh.14476. DOI.
 
29.
Olatunya OS, Lanaro C, Longhini AL. Red blood cells microparticles are associated with hemolysis markers and may contribute to clinicalevents among sickle cell disease patients. Ann Hematol. 2019;98 (11): 2507-2521. doi:10.1007/s00277-019-03792-x. DOI.
 
30.
Vats R, Brzoska T, Bennewitz MF. Platelet extracellular vesicles drive inflammasome-IL-1β-dependent lung injury in sickle cell disease.Am. J. Respir. Crit. Care Med. 2020; 201 (1): 33-46. doi: 10.1164/rccm.201807-1370OC. DOI.
 
31.
Nader E, Romana M, Connes P. The Red Blood Cell-Inflammation Vicious Circle in Sickle Cell Disease. Front Immunol. 2020;13;11:454.doi: 10.3389/fimmu.2020.00454.
 
eISSN:2719-342X
ISSN:0043-5147
Journals System - logo
Scroll to top