Potential Cardioprotective effect of Trimetazidine in Mice model of endotoxemia: role of AMPK-Nrf2
 
More details
Hide details
1
Pharmacology and Therapeutic Department, Faculty of Medicine, University of Kufa, Iraq
 
 
Submission date: 2023-11-01
 
 
Final revision date: 2024-05-18
 
 
Acceptance date: 2024-07-04
 
 
Publication date: 2025-01-31
 
 
Corresponding author
Najah Rayish Hadi   

Pharmacology and Therapeutic Department, Faculty of Medicine, University of Kufa, Iraq
 
 
Wiadomości Lekarskie 2025;(1):35-44
 
KEYWORDS
TOPICS
ABSTRACT
Aim:
Background: Polymicrobial sepsis is a life-threatening situation characterized by multiorgan dysfunction resulting from the body's abnormal response to microbial invasion. Aims: to clarify the potential cardioprotective effect of Trimetazidine against experimentally sepsis-caused endotoxic cardiac injury damage in mice.

Material and methods:
Material and method: 24 Mice were divided into four groups (n=6): Sham group, CLP group DMSO group, trimetazidine-treated group 50 mg/kg IP, 1hr before CLP, then the animals were sacrificed 24 hr after CLP and tissue sample was taken for measurement of TNF-Α, TNF-Αr1, IL-1β, HO-1, MPO, caspase-11, F2-isoprostane and serum troponin by ELISA and gene expression of AMPK-Nrf2 by qpcr and histopathological study.

Results:
Results: trimetazidine treated group showed significant changes as compared with clp group regarding TNF-α, TNF-αr1, IL-1β, HO-1, MPO, CASPASE-11, F2-ISOPROSTANE as well as affect tissue mRNA expression of AMPK-Nrf22 genes p<0.05.

Conclusions:
Conclusion: We evaluate that Trimetazidine has cardio protective effects due to its anti-inflammatory and anti-oxidative action. Also, trimetazidine showed a cardio-protective effect as they affect tissue mRNA expression of AMPK-Nrf2 genes.
REFERENCES (29)
1.
Xingyue L, Shuang L, Qiang W et al. Chrysin ameliorates sepsis-induced cardiac dysfunction through upregulating Nfr2/Heme oxygenase 1 pathway. J Cardiovasc Pharmacol. 2021;77(4):491-500. DOI:10.1097/FJC.0000000000000989.
 
2.
Hamza RT, Majeed SA, Ghafil FA. Nephroprotective effect of melatonin in sepsis induces renal injury: CLP mice model. Lat. Am. J. Pharm. 2022;41(3):589-596. URL: http://www.latamjpharm.org/res....
 
3.
Drosatos K, Lymperopoulos A, Kennel PJ et al. Pathophysiology of sepsis-related cardiac dysfunction: driven by inflammation, energy mismanagement, or both? Curr Heart Fail Rep. 2015;12(2):130-140. DOI:10.1007/s11897-014-0247-z.
 
4.
Hadi SMH, Majeed S, Ghafil FA et al. Effect of sulforaphane on cardiac injury induced by sepsis in a mouse model: role of toll-like receptor 4. J Med Life. 2023;16(7):1120-1126. DOI:10.25122/jml-2023-0015.
 
5.
Tsolaki V, Makris D, Mantzarlis K et al. Sepsis-induced cardiomyopathy: oxidative implications in the initiation and resolution of the damage. Oxid Med Cell Longev. 2017;2017:7393525. DOI:10.1155/2017/7393525.
 
6.
Ghazi A, Majeed SA, Metib NZ et al. Ibudilast ameliorates acute pancreatitis through downregulation of interleukin-1 beta and lipase enzyme. Asian J Pharm. 2020;14(1):9-11.
 
7.
Mo C, Wang L, Zhang J et al. The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice. Antioxid Redox Signal. 2014;20(4):574-588. DOI:10.1089/ars.2012.5116.
 
8.
Younis SS, Ghafil FAA, Majeed S et al. NHWD-870 protects the kidney from ischemia/reperfusion injury by upregulating the PI3K/AKT signaling pathway (experimental study). J Med Life. 2023;16(6):925-931. DOI:10.25122/jml-2022-0309.
 
9.
Younis SS, Ghafil FAA, Majeed S et al. The effect of JQ1 systemic administration on oxidative stress and apoptotic markers in renal ischemic reperfusion injury in a rat model. J Med Life. 2023;16(5):682-688. DOI:10.25122/jml-2022-0287.
 
10.
Marino A, Hausenloy DJ, Andreadou I et al. AMP-activated protein kinase: A remarkable contributor to preserve a healthy heart against ROS injury. Free Radic Biol Med. 2021;166:238-254. DOI:10.1016/j.freeradbiomed.2021.02.047.
 
11.
Shu H, Peng Y, Hang W et al. Trimetazidine in heart failure. Front Pharmacol. 2021;11:569132. DOI:10.3389/fphar.2020.569132.
 
12.
Ghafil FA, Majeed SA, Qassam H et al. Nephroprotective effect of gamma-secretase inhibitor on sepsis- induced renal injury in mouse model of CLP. Wiad Lek. 2023;76(1):122-130. DOI:10.36740/WLek202301117.
 
13.
Abdel-Salam OM, El-Batran S. Pharmacological investigation of trimetazidine in models of inflammation, pain and gastric injury in rodents. Pharmacology. 2005;75(3):122-132. DOI:10.1159/000088211.
 
14.
Ghafil FA, Kadhim SAA, Majeed S et al. Nephroprotective effects of candesartan cilexetil against cyclosporine A-induced nephrotoxicity in a rat model. J Med Life. 2022;15(12):1553-1562. DOI:10.25122/jml-2021-0227.
 
15.
Abdul Kadhim SA, Ghafil FA, Majeed SA, Hadi NR. Nephroprotective effects of curcumin against cyclosporine A-induced nephrotoxicity in rat model. Wiad Lek. 2021;74(12):3135-3146.
 
16.
Zingarelli B, Salzman AL, Szabó C. Genetic disruption of poly (ADP-ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circ Res. 1998;83(1):85-94. DOI:10.1161/01.res.83.1.85.
 
17.
Secher T, Vasseur V, Poisson DM, et al. Crucial role of TNF receptors 1 and 2 in the control of polymicrobial sepsis. J Immunol. 2009;182(12):7855-7864. DOI:10.4049/jimmunol.0804008.
 
18.
Hollenberg SM, Singer M. Pathophysiology of sepsis-induced cardiomyopathy. Nat Rev Cardiol. 2021;18(6):424-434. DOI:10.1038/s41569-020-00492-2.
 
19.
Ibrahim YF, Fadl RR, Ibrahim S et al. Protective effect of febuxostat in sepsis-induced liver and kidney injuries after cecal ligation and puncture with the impact of xanthine oxidase, interleukin 1β, and c-Jun N-terminal kinases. Hum Exp Toxicol. 2020;39(7):906-919. DOI:10.1177/0960327120905957.
 
20.
Li H, Yao W, Irwin MG et al. Adiponectin ameliorates hyperglycemia-induced cardiac hypertrophy and dysfunction by concomitantly activating Nrf2 and Brg1. Free Radic Biol Med. 2015;84:311-321. doi:10.1016/j.freeradbiomed.2015.03.007.
 
21.
Liu Z, Chen JM, Huang H et al. The protective effect of trimetazidine on myocardial ischemia/reperfusion injury through activating AMPK and ERK signaling pathway. Metabolism. 2016;65(3):122-130. doi:10.1016/j.metabol.2015.10.022.
 
22.
Arnhold J. The dual role of myeloperoxidase in immune response. Int J Mol Sci. 2020;21(21):8057. DOI:10.3390/ijms21218057.
 
23.
Chen J, Wang B, Lai J et al. Trimetazidine attenuates cardiac dysfunction in endotoxemia and sepsis by promoting neutrophil migration. Front Immunol. 2018;9:2015. DOI:10.3389/fimmu.2018.02015.
 
24.
Zhang H, Liu M, Zhang Y et al. Trimetazidine attenuates exhaustive exercise-induced myocardial injury in rats via regulation of the Nrf2/NF-κB signaling pathway. Front Pharmacol. 2019;10:175. DOI:10.3389/fphar.2019.00175.
 
25.
Di S, Wang Z, Hu W et al. The protective effects of melatonin against LPS-induced septic myocardial injury: a potential role of AMPK-mediated autophagy. Front Endocrinol (Lausanne). 2020;11:162. DOI:10.3389/fendo.2020.00162.
 
26.
Wu W, Wang S, Liu Q et al. Cathelicidin-WA attenuates LPS-induced inflammation and redox imbalance through activation of AMPK signaling. Free Radic Biol Med. 2018;129:338-353. DOI:10.1016/j.freeradbiomed.2018.09.045.
 
27.
Park KC, Gaze DC, Collinson PO et al. Cardiac troponins: from myocardial infarction to chronic disease. Cardiovasc Res. 2017;113(14):1708-1718. DOI:10.1093/cvr/cvx183.
 
28.
Chen J, Lai J, Yang L et al. Trimetazidine prevents macrophage-mediated septic myocardial dysfunction via activation of the histone deacetylase sirtuin 1. Br J Pharmacol. 2016;173(3):545-561. DOI:10.1111/bph.13386.
 
29.
Mantzarlis K, Tsolaki V, Zakynthinos E. Role of oxidative stress and mitochondrial dysfunction in sepsis and potential therapies. Oxid Med Cell Longev. 2017;2017:5985209. DOI:10.1155/2017/5985209.
 
eISSN:2719-342X
ISSN:0043-5147
Journals System - logo
Scroll to top