Preliminary study of the influence of maternal and neonatal NOS3 (rs1799983), IL1B (rs1143634) genes variants and their intergenic interaction on the development of hypoxic-ischemic encephalopathy in newborns in the context of treatment planning
More details
Hide details
1
Department of Pediatrics #1 and Neonatology, Poltava state medical university, Ukraine
2
Department of anesthesiology and intensive care, Poltava state medical university, Ukraine
3
Expert-analytical medical center for molecular genetics, Shupyk National Healthcare University of Ukraine, Ukraine
Submission date: 2024-09-19
Final revision date: 2024-11-26
Acceptance date: 2024-12-09
Publication date: 2024-12-30
Corresponding author
Yuliia Cherniavska
Department of Pediatrics #1 and Neonatology, Poltava state medical university, 23, Shevchenko str, 36000, Poltava, Ukraine
Wiadomości Lekarskie 2024;77(12):2373-2380
KEYWORDS
TOPICS
ABSTRACT
Aim:
to determine the influence of maternal and neonatal variants of the eNOS (G894T, rs1799983) and IL1B (C3953T, rs1143634) genes and their intergenic interactions on the development of HIE in newborns.
Material and methods:
The study included a cohort of 105 newborns and their 99 mothers. Determination of variants of the genes eNOS (G894T, rs1799983) and IL1B (C3953T, rs1143634) was carried out for the patients of study groups.
Results:
The frequency of detection of the 894TT genotype by the eNOS gene was increased in newborns with severe asphyxia (p=0.018) and in their mothers (p=0,0057). Further analysis of intergenic interactions, performed in mother-child pairs, revealed an increased frequency of the neonatal 894GG (eNOS)/maternal 3953С (IL-1B) genotype combination in the comparison group versus the group of newborns with HIE (p=0.007).
Conclusions:
The significance of the intergenic maternal combination of 894GG/3953CT genotypes for the eNOS and IL1B genes and the intergenic combination of neonatal 894GG (eNOS)/maternal 3953CT (IL-1B) genotypes in the development of HIE in newborns has been proven. Associations of maternal and neonatal 894TT genotypes for the eNOS gene with the development of severe asphyxia, bradycardia, and respiratory failure were found in newborns with HIE.
REFERENCES (31)
1.
Odd D, Heep A, Luyt K, et al. Hypoxic-ischemic brain injury: Planned delivery before intrapartum events. J Neonatal Perinatal Med. 2017;10(4):347-353. doi:10.3233/NPM-16152.
2.
Douglas-Escobar M, Weiss MD. Hypoxic-ischemic encephalopathy: a review for the clinician. JAMA Pediatr. 2015;169(4):397-403. doi:10.1001/jamapediatrics.2014.3269.
3.
Howlett JA, Northington FJ, Gilmore MM, et al. Cerebrovascular autoregulation and neurologic injury in neonatal hypoxic-ischemic encephalopathy. Pediatr Res. 2013;74(5):525-535. doi:10.1038/pr.2013.132.
4.
Vutskits L. Cerebral blood flow in the neonate. Paediatr Anaesth. 2014;24(1):22-29. doi:10.1111/pan.12307.
5.
Cherniavska YI, Pokhylko VI, Znamenska TK, et al. Effect of enos gene polymorphism on the course of early onset bacterial infections in premature infants. Wiad Lek. 2020;73(6):1237-1240.
6.
Higuchi Y, Hattori H, Kume T, et al. Increase in nitric oxide in the hypoxic-ischemic neonatal rat brain and suppression by 7-nitroindazole and aminoguanidine. Eur J Pharmacol. 1998;342(1):47-49. doi:10.1016/s0014-2999(97)01524-0.
7.
van Ierssel SH, Conraads VM, Van Craenenbroeck EM, et al. Endothelial dysfunction in acute brain injury and the development of cerebral ischemia. J Neurosci Res. 2015;93(6):866-872. doi:10.1002/jnr.23566.
8.
Skrypnyk I, Maslova G, Lymanets T, Gusachenko I. L-arginine is an effective medication for prevention of endothelial dysfunction, a predictor of anthracycline cardiotoxicity in patients with acute leukemia. Exp Oncol. 2017;39(4):308-311.
9.
Torres-Merino S, Moreno-Sandoval HN, Thompson-Bonilla MDR, et al. Association Between rs3833912/rs16944 SNPs and Risk for Cerebral Palsy in Mexican Children. Mol Neurobiol. 2019;56(3):1800-1811. doi:10.1007/s12035-018-1178-6.
10.
Hu S, Pi Q, Luo M, et al. Contribution of the NLRP3/IL-1β axis to impaired vasodilation in sepsis through facilitation of eNOS proteolysis and the protective role of melatonin. Int Immunopharmacol. 2021;93:107388. doi:10.1016/j.intimp.2021.107388.
11.
Kelly SB, Green E, Hunt RW, et al. Interleukin-1: an important target for perinatal neuroprotection? Neural Regen Res. 2023;18(1):47-50. doi:10.4103/1673-5374.341044.
12.
Okazaki K, Nakamura S, Koyano K, et al. Neonatal asphyxia as an inflammatory disease: Reactive oxygen species and cytokines. Front Pediatr. 2023;11:1070743. doi:10.3389/fped.2023.1070743.
13.
O'Shea TM, Allred EN, Kuban KC, et al. Elevated concentrations of inflammation-related proteins in postnatal blood predict severe developmental delay at 2 years of age in extremely preterm infants. J Pediatr. 2012;160(3):395-401.e4. doi:10.1016/j.jpeds.2011.08.069.
14.
Prysiazhniuk IV, Pashkovska NV. Asotsiatsiia okremykh pokaznykiv endotelialnoi funktsii z T894G polimorfizmom hena endotelialnoi syntazy monooksydu azotu u khvorykh na hipotyreoz i suputnii khronichnyi kholetsystyt [Association of certain endothelial function indicators with T894G polymorphism of endothelial nitric oxide synthase gene in patients with hypothyroidism and concomitant chronic cholecystitis]. International journal of endocrinology. 2016;2(74):80-84.
https://doi.org/10.22141/2224-... (In Ukrainian).
15.
Kolov G, Grytsay M, Tsokalo V, et al. Variants of il1 (C3954T, rs1143634), PON1 (C108T, rs705379) genes as prognostic markers of osteomyelitis risk and its complications. Georgian med news. 2021; (318):93-98.
16.
Tesauro M, Thompson WC, Rogliani P, et al. Intracellular processing of endothelial nitric oxide synthase isoforms associated with differences in severity of cardiopulmonary diseases: cleavage of proteins with aspartate vs. glutamate at position 298. Proc Natl Acad Sci U S A. 2000;97(6):2832-2835. doi:10.1073/pnas.97.6.2832.
17.
Luo Z, Jia A, Lu Z, et al. Associations of the NOS3 rs1799983 polymorphism with circulating nitric oxide and lipid levels: a systematic review and meta-analysis. Postgrad Med J. 2019;95(1125):361-371. doi:10.1136/postgradmedj-2019-136396.
18.
Sofowora G, Dishy V, Xie HG, et al. In-vivo effects of Glu298Asp endothelial nitric oxide synthase polymorphism. Pharmacogenetics. 2001;11(9):809-814. doi:10.1097/00008571-200112000-00009.
19.
Lin QF, Rao JH, Luo SM, et al. Relation between endothelial nitric oxide synthase genetic polymorphisms and pulmonary arterial hypertension in newborns with congenital heart disease. Clin Exp Hypertens. 2022;44(6):567-572. doi:10.1080/10641963.2022.2085736.
20.
Albeshery MAW, Abdel-Haie OM, Ramadan NS, et al. Endothelial nitric oxide synthase gene Glu298Asp polymorphism in preterm neonates with respiratory distress syndrome. Int J Res Med Sci. 2016;4(12):5382-5386. doi:10.18203/2320-6012.ijrms20164214.
21.
Szpecht D, Gadzinowski J, Seremak-Mrozikiewicz A, et al. Role of endothelial nitric oxide synthase and endothelin-1 polymorphism genes with the pathogenesis of intraventricular hemorrhage in preterm infants. Sci Rep. 2017;7:42541. doi:10.1038/srep42541.
22.
Ophelders DRMG, Gussenhoven R, Klein L, et al. Preterm Brain Injury, Antenatal Triggers, and Therapeutics: Timing Is Key. Cells. 2020;9(8):1871. doi:10.3390/cells9081871.
23.
Pociot F, Mølvig J, Wogensen L, et al. A TaqI polymorphism in the human interleukin-1 beta (IL-1 beta) gene correlates with IL-1 beta secretion in vitro. Eur J Clin Invest. 1992;22(6):396-402. doi:10.1111/j.1365-2362.1992.tb01480.x.
24.
Abu-Maziad A, Schaa K, Bell EF, et al. Role of polymorphic variants as genetic modulators of infection in neonatal sepsis. Pediatr Res. 2010;68(4):323-329. doi:10.1203/PDR.0b013e3181e6a068.
25.
Szpecht D, Gadzinowski J, Nowak I, et al. The significance of IL-1β +3953C>T, IL-6 -174G>C and -596G>A, TNF-α -308G>A gene polymorphisms and 86 bp variable number tandem repeat polymorphism of IL-1RN in bronchopulmonary dysplasia in infants born before 32 weeks of gestation. Cent Eur J Immunol. 2017;42(3):287-293. doi:10.5114/ceji.2017.67000.
26.
Szpecht D, Gadzinowski J, Seremak-Mrozikiewicz A, et al. The significance of polymorphisms in genes encoding Il-1β, Il-6, TNFα, and Il-1RN in the pathogenesis of intraventricular hemorrhage in preterm infants. Childs Nerv Syst. 2017;33(11):1905-1916. doi:10.1007/s00381-017-3458-2.
27.
Green EA, Garrick SP, Peterson B, et al. The Role of the Interleukin-1 Family in Complications of Prematurity. Int J Mol Sci. 2023;24(3):2795. doi:10.3390/ijms24032795.
28.
Albrecht M, Arck PC. Vertically Transferred Immunity in Neonates: Mothers, Mechanisms and Mediators. Front Immunol. 2020;11:555. doi:10.3389/fimmu.2020.00555.
29.
Shah PS, Shah VS, Kelly LE. Arginine supplementation for prevention of necrotising enterocolitis in preterm infants. Cochrane Database Syst Rev. 2017;4(4):CD004339. doi:10.1002/14651858.CD004339.pub4.
30.
Xia Y, Chen S, Zhu G, Huang R, Yin Y, Ren W. Betaine Inhibits Interleukin-1β Production and Release: Potential Mechanisms. Front Immunol. 2018;9:2670. doi:10.3389/fimmu.2018.02670.
31.
Kitade H, Sakitani K, Inoue K, et al. Interleukin 1 beta markedly stimulates nitric oxide formation in the absence of other cytokines or lipopolysaccharide in primary cultured rat hepatocytes but not in Kupffer cells. Hepatology. 1996;23(4):797-802. doi:10.1053/jhep.1996.v23.pm0008666334.