Prospects of osteosynthesis with fixators based on magnesium alloys, mechanical and physiological properties. The state of the problem at the current stage.
 
More details
Hide details
1
Department of Orthopedics and Traumatology, Shupyk National Healthcare University of Ukraine, Ukraine
 
2
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Educational and Scientific Institute of Materials Science and Welding named after E. O. Paton, KYIV, UKRAINE, Ukraine
 
 
Submission date: 2024-04-16
 
 
Final revision date: 2024-10-07
 
 
Acceptance date: 2024-12-09
 
 
Publication date: 2025-01-31
 
 
Corresponding author
Bohdan Andreyovych Kotelyukh   

Department of Orthopedics and Traumatology, Shupyk National Healthcare University of Ukraine, Ukraine
 
 
Wiadomości Lekarskie 2025;(1):162-167
 
KEYWORDS
TOPICS
surgery
 
ABSTRACT
Setting the objective: The aim of this work is to analyze the available scientific information regarding to the prospects of metal-osteosynthesis with biodegradable fixators based on magnesium alloys. Materials and methods: A set of general and special methods of scientific knowledge are used in the article.Search and analysis of full-text articles and scientific publications - carried out in databases of systematic reviews of MEDLINE, PubMed, Web of Science, Google Scholar, Scopus. Results: The use of fixators made of magnesium alloys during osteosynthesis of bone fractures does not require the second surgical intervention with regard to remove the fixators, which have fulfilled their goal. Magnesium alloys are light and have one-third the density of titanium fasteners. No pressure is created at the place of implantation, due to the fact that the Young's modulus of implants is similar to the modulus of bone tissue. Magnesium-based implants contribute to osteogenesis, angiogenesis, neuroregeneration, regeneration and remodeling of bones at the same time inhibiting osteoclast activity and inflammation. Magnesium and its alloys have excellent biocompatibility with bone tissue. Conclusions: Magnesium-based implants contribute to a tissue regeneration and healing during degradation and do not require removal. This allows you to avoid the second surgical intervention and reduces treatment costs. That is why the development and implementation of biodegradable fixators for osteosynthesis is of great importance.
REFERENCES (40)
1.
Kaur MSK. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater. Sci. Eng. C. 2019; 102: 844 – 862. DOI: 10.1016/j.msec.2019.04.064.
 
2.
Zhao D, Witte F, Lu F, et al. Current status on clinical applications of magnesiumbased orthopaedic implants: a review from clinical translational perspective.Biomaterials. 2017; 112: 287–302. DOI: 10.1016/j.biomaterials.2016.10.017.
 
3.
Xu L, Willumeit-Römer R, Luthringer-Feyerabend BJC. Effect of magnesium-degradation products and hypoxia on the angiogenesis of human umbilical vein endothelial cells. Acta Biomater. 2019 Oct 15;98:269-283. doi: 10.1016/j.actbio.2019.02.018.
 
4.
Shahin M, Munir K, Wen C, et al. Magnesium matrix nanocomposites for orthopedic applications: a review from mechanical, corrosion, and biological perspectives. Acta Biomater. 2019; 96: 1–19. DOI:10.1016/j.actbio.2019.06.007.
 
5.
Zhao, Dewei, et al. "Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head." Biomaterials 81 (2016): 84-92. DOI:10.1016/j.biomaterials.2015.11.038.
 
6.
Nakano M, Kawaguchi Y, Kimura T, Hirano N. Transpedicular vertebroplasty after intravertebral cavity formation versus conservative treatment for osteoporotic burst fractures. Spine J. 2014 Jan;14(1):39-48. doi: 10.1016/j.spinee.2013.03.016.
 
7.
Han HS, Jun I, Seok HK, Lee KS, Lee K, Witte F, Mantovani D, Kim YC, Glyn-Jones S, Edwards JR. Biodegradable Magnesium Alloys Promote Angio-Osteogenesis to Enhance Bone Repair. Adv Sci (Weinh). 2020 Jun 23;7(15):2000800. doi: 10.1002/advs.202000800.
 
8.
Gu Y, Zhang J, Zhang X, Liang G, Xu T, Niu W. Three-dimensional Printed Mg-Doped β-TCP Bone Tissue Engineering Scaffolds: Effects of Magnesium Ion Concentration on Osteogenesis and Angiogenesis In Vitro. Tissue Eng Regen Med. 2019 Jun 17;16(4):415-429. doi: 10.1007/s13770-019-00192-0.
 
9.
Jafari S, Singh Raman RK, Davies CHJ. Corrosion fatigue of a magnesium alloy in modified simulated body fluid. Eng. Fract. Mech. 2015; 137: 2–11. DOI:10.1016/j.engfracmech.2014.08.009.
 
10.
Ji XJ, Gao L, Liu JC, Wang J, Cheng Q, Li JP, Li SQ, Zhi KQ, Zeng RC, Wang ZL. Corrosion resistance and antibacterial properties of hydroxyapatite coating induced by gentamicin-loaded polymeric multilayers on magnesium alloys. Colloids Surf B Biointerfaces. 2019 Jul 1;179:429-436. doi: 10.1016/j.colsurfb.2019.04.029.
 
11.
Knigge SR, Glasmacher B. Comparison between three in vitro methods to measure magnesium degradation and their suitability for predicting in vivo degradation. Int J Artif Organs. 2018 Nov;41(11):772-778. doi: 10.1177/0391398818772777.
 
12.
Yoshizawa S, Brown A, Barchowsky A, Sfeir C. Role of magnesium ions on osteogenic response in bone marrow stromal cells. Connect Tissue Res. 2014 Aug;55 Suppl 1:155-9. doi: 10.3109/03008207.2014.923877.
 
13.
Zhang F, Xu H, Wang H, Geng F, Ma X, Shao M, et al. Quantitative analysis of near-implant magnesium accumulation for a Si-containing coated AZ31 cage from a goat cervical spine fusion model. BMC musculoskeletal disorders. 2018; 19 (1): 105. DOI:10.1186/s12891-018-2027-5.
 
14.
Makkar P, Sarkar SK, Padalhin AR, Moon BG, Lee YS, Lee BT. In vitro and in vivo assessment of biomedical Mg-Ca alloys for bone implant applications. J Appl Biomater Funct Mater. 2018 Jul;16(3):126-136. doi: 10.1177/2280800017750359.
 
15.
Zhang X, Zu H, Zhao D, Yang K, Tian S, Yu X, Lu F, Liu B, Yu X, Wang B, Wang W, Huang S, Wang Y, Wang Z, Zhang Z. Ion channel functional protein kinase TRPM7 regulates Mg ions to promote the osteoinduction of human osteoblast via PI3K pathway: In vitro simulation of the bone-repairing effect of Mg-based alloy implant. Acta Biomater. 2017 Nov;63:369-382. doi: 10.1016/j.actbio.2017.08.051.
 
16.
Hung CC, Chaya A, Liu K, Verdelis K, Sfeir C. The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway. Acta Biomater. 2019 Oct 15;98:246-255. doi: 10.1016/j.actbio.2019.06.001.
 
17.
Wu L, Feyerabend F, Schilling AF, Willumeit-Römer R, Luthringer BJC. Effects of extracellular magnesium extract on the proliferation and differentiation of human osteoblasts and osteoclasts in coculture. Acta Biomater. 2015 Nov;27:294-304. doi: 10.1016/j.actbio.2015.08.042.
 
18.
Kovács B, Vajda E, Nagy EE. Regulatory Effects and Interactions of the Wnt and OPG-RANKL-RANK Signaling at the Bone-Cartilage Interface in Osteoarthritis. Int J Mol Sci. 2019 Sep 19;20(18):4653. doi: 10.3390/ijms20184653.
 
19.
Willumeit-Romer R. The interface between degradable Mg and tissue, JOM. 2019; 71 (4): 1447 – 1455. DOI:10.1007/s11837-019-03368-0.
 
20.
Wang Z, Wang X, Pei J, Tian Y, Zhang J, Jiang C, Huang J, Pang Z, Cao Y, Wang X, An S, Wang X, Huang H, Yuan G, Yan Z. Degradation and osteogenic induction of a SrHPO4-coated Mg-Nd-Zn-Zr alloy intramedullary nail in a rat femoral shaft fracture model. Biomaterials. 2020 Jul;247:119962. doi: 10.1016/j.biomaterials.2020.119962.
 
21.
Lee JW, Han HS, Han KJ, Park J, Jeon H, Ok MR, Seok HK, Ahn JP, Lee KE, Lee DH, Yang SJ, Cho SY, Cha PR, Kwon H, Nam TH, Han JH, Rho HJ, Lee KS, Kim YC, Mantovani D. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):716-21. doi: 10.1073/pnas.1518238113.
 
22.
Liu C, Ren Z, Xu Y, Pang S, Zhao X, Zhao Y. Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review. Scanning. 2018 Mar 13;2018:9216314. doi: 10.1155/2018/9216314.
 
23.
Jang HY, Shin JY, Oh SH, Byun JH, Lee JH. PCL/HA Hybrid Microspheres for Effective Osteogenic Differentiation and Bone Regeneration. ACS Biomater Sci Eng. 2020 Sep 14;6(9):5172-5180. doi: 10.1021/acsbiomaterials.0c00550.
 
24.
Hong K, Park H, Kim Y, Knapek M, Minárik P, Máthis K, Yamamoto A, Choe H. Mechanical and biocorrosive properties of magnesium-aluminum alloy scaffold for biomedical applications. J Mech Behav Biomed Mater. 2019 Oct;98:213-224. doi: 10.1016/j.jmbbm.2019.06.022.
 
25.
Zhang X, Huang P, Jiang G, Zhang M, Yu F, Dong X, Wang L, Chen Y, Zhang W, Qi Y, Li W, Zeng H. A novel magnesium ion-incorporating dual-crosslinked hydrogel to improve bone scaffold-mediated osteogenesis and angiogenesis. Mater Sci Eng C Mater Biol Appl. 2021 Feb;121:111868. doi: 10.1016/j.msec.2021.111868.
 
26.
Parande G, Manakari V, Prasadh S, Chauhan D, Rahate S, Wong R, Gupta M. Strength retention, corrosion control and biocompatibility of Mg-Zn-Si/HA nanocomposites. J Mech Behav Biomed Mater. 2020 Mar;103:103584. doi: 10.1016/j.jmbbm.2019.103584.
 
27.
Li Y, Zhao S, Li S, Ge Y, Wang R, Zheng L, Xu J, Sun M, Jiang Q, Zhang Y, Wei H. Surface Engineering of Biodegradable Magnesium Alloys for Enhanced Orthopedic Implants. Small. 2019 Dec;15(51):e1904486. doi: 10.1002/smll.201904486.
 
28.
Cheng S, Zhang D, Li M, Liu X, Zhang Y, Qian S, Peng F. Osteogenesis, angiogenesis and immune response of Mg-Al layered double hydroxide coating on pure Mg. Bioact Mater. 2020 Aug 11;6(1):91-105. doi: 10.1016/j.bioactmat.2020.07.014.
 
29.
Munir K, Lin J, Wen C, Wright PFA, Li Y. Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications. Acta Biomater. 2020 Jan 15;102:493-507. doi: 10.1016/j.actbio.2019.12.001.
 
30.
Lin Z, Zhao Y, Chu PK, Wang L, Pan H, Zheng Y, Wu S, Liu X, Cheung KMC, Wong T, Yeung KWK. A functionalized TiO2/Mg2TiO4 nano-layer on biodegradable magnesium implant enables superior bone-implant integration and bacterial disinfection. Biomaterials. 2019 Oct;219:119372. doi: 10.1016/j.biomaterials.2019.119372.
 
31.
Liu W, Guo S, Tang Z, Wei X, Gao P, Wang N, Li X, Guo Z. Magnesium promotes bone formation and angiogenesis by enhancing MC3T3-E1 secretion of PDGF-BB. Biochem Biophys Res Commun. 2020 Aug 6;528(4):664-670. doi: 10.1016/j.bbrc.2020.05.113.
 
32.
Gao P, Fan B, Yu X, Liu W, Wu J, Shi L, Yang D, Tan L, Wan P, Hao Y, Li S, Hou W, Yang K, Li X, Guo Z. Biofunctional magnesium coated Ti6Al4V scaffold enhances osteogenesis and angiogenesis in vitro and in vivo for orthopedic application. Bioact Mater. 2020 May 12;5(3):680-693. doi: 10.1016/j.bioactmat.2020.04.019.
 
33.
Razavi M, Fathi M, Savabi O, Tayebi L, Vashaee D. Biodegradable Magnesium Bone Implants Coated with a Novel Bioceramic Nanocomposite. Materials (Basel). 2020 Mar 13;13(6):1315. doi: 10.3390/ma13061315.
 
34.
Li Y, Liu L, Wan P, Zhai Z, Mao Z, Ouyang Z, Yu D, Sun Q, Tan L, Ren L, Zhu Z, Hao Y, Qu X, Yang K, Dai K. Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations. Biomaterials. 2016 Nov;106:250-63. doi: 10.1016/j.biomaterials.2016.08.031.
 
35.
Liu C, Yang G, Zhou M, Zhang X, Wu X, Wu P, Gu X, Jiang X. Magnesium Ammonium Phosphate Composite Cell-Laden Hydrogel Promotes Osteogenesis and Angiogenesis In Vitro. ACS Omega. 2021 Apr 2;6(14):9449-9459. doi: 10.1021/acsomega.0c06083.
 
36.
Chen S, Wan P, Zhang B, Yang K, Li Y. Facile fabrication of the zoledronate-incorporated coating on magnesium alloy for orthopaedic implants. J Orthop Translat. 2019 Oct 18;22:2-6. doi: 10.1016/j.jot.2019.09.007.
 
37.
Chen K, Xie X, Tang H, Sun H, Qin L, Zheng Y, Gu X, Fan Y. In vitro and in vivo degradation behavior of Mg-2Sr-Ca and Mg-2Sr-Zn alloys. Bioact Mater. 2020 Feb 25;5(2):275-285. doi: 10.1016/j.bioactmat.2020.02.014.
 
38.
Kawamura N, Nakao Y, Ishikawa R, Tsuchida D, Iijima M. Degradation and Biocompatibility of AZ31 Magnesium Alloy Implants In Vitro and In Vivo: A Micro-Computed Tomography Study in Rats. Materials (Basel). 2020 Jan 19;13(2):473. doi: 10.3390/ma13020473.
 
39.
Andrade VM, Aschner M, Marreilha Dos Santos AP. Neurotoxicity of Metal Mixtures. Adv Neurobiol. 2017;18:227-265. doi: 10.1007/978-3-319-60189-2_12.
 
40.
Ben Amara H, Martinez DC, Shah FA, Loo AJ, Emanuelsson L, Norlindh B, Willumeit-Römer R, Plocinski T, Swieszkowski W, Palmquist A, Omar O, Thomsen P. Magnesium implant degradation provides immunomodulatory and proangiogenic effects and attenuates peri-implant fibrosis in soft tissues. Bioact Mater. 2023 Mar 16;26:353-369. doi: 10.1016/j.bioactmat.2023.02.014.
 
eISSN:2719-342X
ISSN:0043-5147
Journals System - logo
Scroll to top